Tetrahedron Letters No.29, pp. 3471-3476, 1966. Pergamon Press Ltd. Printed in Great Britain.

THE PREPARATION OF ALKYLDIGERMANE HALIDES*

E.J.Bulten and J.G.Noltes

Institute for Organic Chemistry TNO, Utrecht, the Netherlands

(Received 18 May 1966)

Only a few data are available in the literature on alkyldigermane halides. A compound with the composition $\operatorname{Bu}_4\operatorname{Ge}_2\operatorname{I}_2$ was isolated by Jacobs from the reaction of Ge_2 with $\operatorname{Bu}_2\operatorname{Hg}^{(1)}$. Vyazankin⁽²⁾ isolated impure $\operatorname{Et}_3\operatorname{GeGeBrEt}_2$ in about 50% yield by reacting $\operatorname{Et}_3\operatorname{GeGeEt}_3$ with i-PrBr in the presence of Alcl_3 .

Our investigations on transalkylation reactions between alkylgermanium derivatives⁽³⁾ according to:

$$R_4Ge + GeCl_4 \xrightarrow{\text{catalyst}} R_3GeCl + RGeCl_3$$
 (1)

have been extended to hexaalkyldigermanes. It appeared that compounds of the type $R_3GeGeClR_2$ and $R_2ClGeGeClR_2$ are readily accessible according to:

$$R_3 GeGeR_3 + GeCl_4 \longrightarrow R_3 GeGeClR_2 + RGeCl_3$$
(2)

$$R_3 \text{GeGeR}_3 + 2 \text{ GeCl}_4 \longrightarrow R_2 \text{ClGeGeClR}_2 + 2 \text{ RGeCl}_3$$
(3)

^{*} Part V in the series "Investigations on Organogermanium Compounds"; Part IV: ref. 3.

No.29

As can be seen from Table I pentaalkyldigermane halides can easily be prepared in high yields according to (2). The introduction of a second chlorine atom according to (3) can only be performed either by prolonged reaction times or by using $\operatorname{Gel}_{2}^{(3)}$ as a catalyst.

	TABLE I				
Reaction of	Et3GeGeEt3	with	GeCl4	at	200 [°] C

Molar ratio	Total	Composit	ion (%) of	Reaction	n Loss of
GeCl ₄ :Et_GeGeEt_	recovery of	the digerma	ane fraction ^b	time,	digermane
, , , , , , , , , , , , , , , , , , ,	digermanes ^a	Et3GeGeClEt2	Et2ClGeGeClEt2	hrs.	by decomp.
	(moles)	-			
1,03 [°]	0,81	~100	trace	6	trace
1,00 ¹	0,88	100	0	6	-
1,95 [°]	0,82	20	80	6	trace
2,92 ^e	0,77	14	86	6	trace
3,98 ^e	0,73	4	96	6	+
1,99 ^{d,e}	0,76	0	100	6	+
1,9 ^e	0,78	0	100	24	+

^a The reaction mixtures were separated by distillation in a monogermane and a digermane fraction. Only the latter was analyzed; ^b Determined by gaschromatography and chlorine analyses; Et₃GeGeEt₃ was completely converted; ^c Mainly Et₂GeCl₂; ^d Catalyzed by GeI₂⁽³⁾; ^e Sealed tube; ^f Expts. at atmospheric pressure⁽⁴⁾.

The dichlorodigermanes isolated have a symmetric structure as appears from the halogen cleavage reaction (4), a dialkylgermanium dihalide being the sole reaction product.

$$R_2 ClGeGeClR_2 + X_2 \longrightarrow 2 R_2 GeClX$$
 (4)

Reaction between a hexaalkyldigermane and one or two equivalents of either CCl_4 or SiCl_4 results in appreciable decomposition. SnCl_4 reacts essentially in the same way as GeCl_4 , but is much more reactive than the latter. The reaction with SnCl_4 is especially suited for the preparation of tetraalkyldigermane halides (see Table 11).

Both the observation that substitution of a second alkyl group by halogen takes place preferably at the germanium atom with the highest degree of alkylation and the greater reactivity of $SnCl_4$ as compared with GeCl₄ are in agreement with a mechanism involving electrophilic attack by chlorine on carbon (cf. ref. 3).

The composition of the digermane mixtures obtained was determined by gaschromatography, since a mixture of R_3 GeGeR₃, R_3 GeGeClR₂ and R_2 ClGeGeClR₂ can not be separated by distillation. Therefore, the conditions which give rise to the formation of either R_3 GeGeClR₂ or R_2 ClGeGeClR₂ as the <u>sole</u> reaction product have been determined.

Digermane halides differ markedley from their ditin analogs in thermal and oxidative stability. Whereas compounds of the type $R_2ClSnSnClR_2$ are highly susceptible towards oxydation⁽⁹⁾, the chlorinated digermanes are relatively inert. Pentaethylditin chloride is stable at -20°C but decomposes at room temperature with formation of triethyltin chloride⁽⁶⁾. On the other hand $Et_3GeGeClEt_2$ was recovered unchanged after heating for 6 hrs. at 200°C (under nitrogen). Under the same conditions $Et_2ClGeGeClEt_2$ was decomposed for about 8 % into Et_2GeCl_2 and some polymeric material, possibly according to:

$$n \operatorname{Et}_{2} \operatorname{ClGeGeClEt}_{2} \xrightarrow{\Delta} n \operatorname{Et}_{2} \operatorname{GeCl}_{2} + \left[\operatorname{Et}_{2} \operatorname{Ge}\right]_{n} \quad (5)$$

H	
TABLE	

Reaction of Et $_3^{\rm GeGe Et}$ with ${\rm MG1}_4$ at $200^{\rm O}$ C

	Nolar ratio	Total recovery	ö	amposition (%) of	Reaction	Loss of
1	MC14:Et3GeGeEt3	of digermanes ^a (moles)	the Et ₃ GeGeEt ₃ I	digermane fr It ₃ GeGeClEt ₂	action Et ₂ 01GeGeG1Et ₂	time, Ars.	digermane by lecomp.
0	1,06 ^e	0,53	77	53	0	Ċ.'	+ +
i,	0,95 ^e	0,23	91	6	0	ŝ	+ +
Ge	1,03 ^e	0,81	0	~100	trace	Ċ	trace
sn ^d	1,00 ^e	0,80	0	93	L	Q	trace
U	2 ,0 8 ^e	0, 22	0	69	31	Ç	+ +
ß.	2,00 ^e	0,10	0	CN	98	Ç	+ +
ge	1,96 ^e	0,82	0	20	80	ę	trace
\mathbf{sn}^{d}	2,12 ⁶	ి కి	0	С	100	Ś	trace
Sn ^d	2,09 ^f	0 , ć4	o	0	100	m	+
a See	; note a table I; ^b	Determined by gau	schromatograpi	ay and chlori	ne analyses; c	Variable am	ounts of
Et Ge	all and Et_2GeCl_2 , ^d	Occurionally smal	1] amounts of	SnCl ₂ were f	'ormed; ^e Sealed	tube; ^f Ex	pt. et
0.420	spheric pressure(4)						

A variety of reactions can be performed with the digermane halides without rupture of the metal-metal bond. Hydrolysis affords the oxides (6, 7), the dichlorodigermane yielding the cyclic dimer.

$$R_3 \text{GeGeCl} R_2 \xrightarrow{\square_2 0} (R_3 \text{Ge-GeR}_2)_2 0 \tag{6}$$

$$R_2 ClGeGeClR_2 \xrightarrow{\exists_2 0} \left[R_2 Ge-GeR_2 - 0 \right]_2$$
(7)

Reduction of $Bu_3GeGeClBu_2$ with $LiAlH_4$ in Et_2O affords $Bu_3GeGeHBu_2$ as an air-sensitive liquid. Alkylation of $Bu_3GeGeClBu_2$ with MeMgBr gives $Bu_3GeGeMeBu_2$.

The physical constants and yields for some new digermanes are summarized in Table III.

Compound	b.p.(⁰ C/mm Hg)	n_D^{20}	yield (%)
Et ₃ GeGeClEt ₂	126-127/16	1,5092	88
Et ₂ ClGeGeClEt ₂	130-132/16	1,5197	86
Pr ₃ GeGeClPr ₂	110-112/ 0,4	1,5007	60
3u30e0e013u2	130-132/ 0,06	1,4932	87
Bu ₂ ClGeGeClBu ₂	133-138/ 0,16	1,5027	86
(It ₃ GeGeEt ₂) ₂ 0	162-165/ 0,3	1,5185	70
$\left[\frac{1}{2} \operatorname{Su}_2 \operatorname{Ge-Ge}_2 - \operatorname{O}_2\right]$	130-132/ 5.10 ⁻⁵	1,4993	80
BuzGeGeHBuz	115-116/ 0,09	1,4851	50
Bu3GeGeMeBu2	125-126/ 0,1	1,4841	84

TABLE III New digermanes prepared^e

 $^{\mbox{\scriptsize a}}$ Satisfactory analyses have been obtained for all compounds reported.

<u>Acknowledgement</u>. The authors gratefully acknowledge the "Germanium Research Committee" for support of this work and for permission to publish the results. They wish to thank Professor G.J.M.van der Kerk for his stimulating interest. Thanks are also due to Mr.J.Q.Mol and Miss G.G.de Haan for able experimental assistance.

REFERENCES

- 1. G.Jacobs, Compt.rend. 238, 1825 (1954).
- N.S.Vyazankin, E.N.Gladyshev, S.P.Korneva and G.A.Razuvaev, <u>Zh.Obsheh.Khim. 34</u>, 1645 (1965).
- 3. F.Rijkens, W.Drenth, E.J.Bulten and G.J.M.van der Kerk, <u>Rec.Trav.Chim</u>., in the press.
- 4. F.Rijkens and G.J.M. van der Kerk, <u>Rec.Trav.Chim. 83</u>, 723 (1964).
- 5. A.J.Gibbon, A.K.Sawyer and A.Ross, <u>J.Org.Chem</u>. <u>26</u>, 2304 (1961).
- 6. H.M.J.C.Creemers and J.G.Noltes, unpublished results.